Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

نویسندگان

  • Roman V. Reshetnikov
  • Jiri Sponer
  • Olga I. Rassokhina
  • Alexei M. Kopylov
  • Philipp O. Tsvetkov
  • Alexander A. Makarov
  • Andrey V. Golovin
چکیده

A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-molecule detection of folding and unfolding of the G-quadruplex aptamer in a nanopore nanocavity

Guanine-rich nucleic acids can form G-quadruplexes that are important in gene regulation, biosensor design and nano-structure construction. In this article, we report on the development of a nanopore encapsulating single-molecule method for exploring how cations regulate the folding and unfolding of the G-quadruplex formed by the thrombin-binding aptamer (TBA, GGTTGGTGTGGTTGG). The signature bl...

متن کامل

Atomistic Picture for the Folding Pathway of a Hybrid-1 Type Human Telomeric DNA G-quadruplex

In this work we studied the folding process of the hybrid-1 type human telomeric DNA G-quadruplex with solvent and K(+) ions explicitly modeled. Enabled by the powerful bias-exchange metadynamics and large-scale conventional molecular dynamic simulations, the free energy landscape of this G-DNA was obtained for the first time and four folding intermediates were identified, including a triplex a...

متن کامل

Kinetics and mechanism of K+- and Na+-induced folding of models of human telomeric DNA into G-quadruplex structures

Cation-induced folding into quadruplex structures for three model human telomeric oligonucleotides, d[AGGG(TTAGGG)(3)], d[TTGGG(TTAGGG)(3)A] and d[TTGGG(TTAGGG)(3)], was characterized by equilibrium titrations with KCl and NaCl and by multiwavelength stopped flow kinetics. Cation binding was cooperative with Hill coefficients of 1.5-2.2 in K(+) and 2.4-2.9 in Na(+) with half-saturation concentr...

متن کامل

Mass spectrometric studies on effects of counter ions of TMPyP4 on binding to human telomeric DNA and RNA G-quadruplexes

A comparative study on human telomeric DNA G-quadruplex binding of meso-5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4) between its two salt forms, i.e., tetratosylate and tetrachloride, was conducted by using ESI-TOF-MS, UV-melting measurement, and molecular modeling methods. Besides cation TMPyP4, the tosyl anion was found to bind to human telomeric DNA G-quadruplex with multiple bi...

متن کامل

Strand directionality affects cation binding and movement within tetramolecular G-quadruplexes

Nuclear magnetic resonance study of G-quadruplex structures formed by d(TG(3)T) and its modified analogs containing a 5'-5' or 3'-3' inversion of polarity sites, namely d(3'TG5'-5'G(2)T3'), d(3'T5'-5'G(3)T3') and d(5'TG3'-3'G(2)T5') demonstrates formation of G-quadruplex structures with tetrameric topology and distinct cation-binding preferences. All oligonucleotides are able to form quadruplex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2011